Software techniques for perfect elementary functions in floating-point interval arithmetic

Florent de Dinechin, projet Arénaire
Sergey Maidanov, Intel

Real Numbers and Computers 2006, Nancy
Outline

Interval arithmetic, directed rounding and elementary functions

Perfect interval functions

Implementation

Conclusion and future work
Introduction:
Interval arithmetic, directed rounding and elementary functions

Interval arithmetic, directed rounding and elementary functions

Perfect interval functions

Implementation

Conclusion and future work
Directed rounding modes

In this talk, we target **double-precision** computations.

- The IEEE-754 standard defines, for a real number \(x \) and a floating-point format \(\mathbb{F} \),
 - the correct rounding up of \(x \),
 - the correct rounding down of \(x \)
 - the correct rounding to zero of \(x \)

- Correct directed rounding supported by most processors at a cost for \(\pm, -, \times, \div, \sqrt{\cdot} \)

- Intended mostly for **interval arithmetic** (IA)
 - IA represents a real number \(x \) by an interval containing \(x \).
 - Interval endpoints are **machine-representable** numbers, here in double-precision.

- Some interval arithmetic packages don’t use directed rounding at all
Interval arithmetic does not require correct rounding

Important properties of interval operations are, *in this order*:

- **Safety**
 - For all real values in the input interval(s), the real result belongs to the output interval (*containment property*).

- **Sharpness** (of the output interval)
 - Finite number representation \implies output interval usually larger than the image of the input interval
 - Define the *tight* result as the smallest interval ensuring the containment property, considering the number format
 - Related to correct rounding in directed rounding modes

- **Performance**

<table>
<thead>
<tr>
<th>Perfect interval elementary function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Safe</td>
</tr>
<tr>
<td>- Tight</td>
</tr>
<tr>
<td>- Efficient</td>
</tr>
</tbody>
</table>
Interval people have long been writing interval elementary functions which are
- safe (usually),
- sharp (but not tight),
- and sometimes efficient

In the CRLibm project, we have been writing correctly rounded elementary functions in directed rounding modes, wondering
- Why? Who cares
- What should the interface be?

We should be writing perfect interval elementary functions instead.
Some IA packages

- Sun Microsystems’ SunStudio
 - Very efficient integrated language/compiler approach (Fortran95 and C++)
 - Sharp (almost tight) elementary functions
 ▶ paper by Priest in Arith 13
 ▶ tight for more than 99% of input intervals
 - No published proof (and not open-source).
 - Not portable.

- fi_lib then C-XST then filib++
 - Portable, does not use hardware directed rounding
 - Neither sharp nor efficient, even for basic operations
 - Elementary functions written from scratch and carefully proven (in German).
Some IA packages (2)

- INTLAB (a Matlab package)
 - A trick by Rump: use the (underspecified) \texttt{libm} to build safe interval functions
 - But inefficient, non-sharp, and still requires development and proof work

- Boost
 - Empty shell: C++ templates and policies
 - Generic: FP intervals, but also multiple-precision if needed
 - Portable
 - Sharpness and efficiency depending on how you fill the shell

- MPFI
 - Safe and tight (on top of MPFR)
 - Not optimised for double-precision
 - but then you get multiple-precision IA...
Perfect interval functions

Interval arithmetic, directed rounding and elementary functions

Perfect interval functions

Implementation

Conclusion and future work
Implementing an interval function

Evaluate $f([x_-, x_+])$

- If the function f is monotonic increasing
 - Round down $f(x_-)$
 - Round up $f(x_+)$
 - That’s all.

- If the function is monotonic decreasing
 - Left as an exercise for the reader

- If the function is not monotonic on the interval
 - Elementary functions are well-behaved:
 - Such cases are handled in the argument reduction.
 - It may actually save work
 - $\sin([-42, 17])$

In theory, nothing difficult, really.
Evaluate $y \approx f(x)$ to some precision ε

Is this information enough to ensure that rounding y is equivalent to rounding $f(x)$?

- Sometimes yes,
- Sometimes no.
Rounding up a function

\[\frac{y}{(1 \pm \varepsilon)} \]

Two options:
- Round up \(\frac{y}{(1 - \varepsilon)} \) (Krämer, Priest)
 - safe,
 - not tight (in the red case),
 - fast.
- Onion peeling strategy (CRLibm, idea by Ziv)
 1. *Rounding test* on \(y \) knowing \(\varepsilon \): Are we in the green case?
 2. If yes, return \(y \) rounded up.
 3. If no, compute \(y_2 \) with a smaller \(\varepsilon_2 \), and go back to 1.

- safe if termination is proven (elementary functions),
- tight,
- slower, but just a little
 - small cost of rounding test
 - restarting computation is expensive, but rare.
There are finitely many FP input numbers x.
Among them, finitely many are such that $f(x)$ is an FP number:
- 1 for exp, log, sine, cosine, tangent, ...
- 23 for log10,
- 2047 for log2,
- ...
Among the remaining ones, there is a minimum (worst-case) distance from $f(x)$ to an FP number.
Choosing $\bar{\varepsilon}$ smaller than this distance guarantees correct rounding.
Lefèvre and Muller have computed such “worst cases” for quite a few functions.
Why perfection is not very expensive

Both approaches for rounding up a function need

- An algorithm for evaluating y,
- with a proven error bound $\bar{\epsilon}$
 - That’s the difficult bit

Additional cost for a perfect interval function:

- Compute the TMD worst cases
 - (once for all)
- Design a rounding test
 - (already studied in projects such as MPFR and CRLibm)
- Write a second, more accurate computation (and prove its $\bar{\epsilon}_2$)
 - We have it in CRLibm, too
 - This second step is easier to write and prove than the first
 - Its average runtime cost is very low
TMD worst case still missing for some functions on some intervals.

- Statistical arguments gives us fair hope that our code always returns correctly rounded result.
- For IA, hope isn’t enough.

Never mind. Round up $y_2/(1 - \bar{e}_2)$ at the end of the second step (or, second rounding test)

- Statistics predict that it will probably never change the result.
- If it does, it will add one ulp.
- Not expensive in average, because in the second step.

For such functions with missing TMD worst cases, we get a probably perfect interval functions.

- The “probably” is on tightness, not on safety nor performance.
- More TMD work may prove tightness a posteriori.
Performance should be more or less in a factor two with respect to the scalar libm (Priest, Arith13)

- (more): context changes (argument passing, processor status)
- (less): work sharing (argument reduction, table prefetches, cache misses)
- (less): intrinsic parallelism, better pipeline usage
Implementation on an Itanium® 2-based platform

Interval arithmetic, directed rounding and elementary functions

Perfect interval functions

Implementation

Conclusion and future work
Convert Itanium-optimised correctly rounded exp and log into a perfect interval function.
Parallel Estrin evaluation

Itanium has two parallel FMAs (*fused multiply and add*), and many many registers.

\[
\begin{align*}
 z2i &= zi * zi; \\
 p67i &= c6 + zi * c7; \\
 p45i &= c4 + zi * c5; \\
 p23i &= c2 + zi * c3; \\
 p01i &= \text{logirhi} + zi * c1; \\
 z4i &= z2i * z2i; \\
 p47i &= p45i + z2i * p67i; \\
 p03i &= p01i + z2i * p23i; \\
 p07i &= p03i + z4i * p47i; \\
 \text{logi} &= p07i + Ei * \log2h;
\end{align*}
\]

\[
\begin{align*}
 z2s &= zs * zs; \\
 p67s &= c6 + zs * c7; \\
 p45s &= c4 + zs * c5; \\
 p23s &= c2 + zs * c3; \\
 p01s &= \text{logirhs} + zs * c1; \\
 z4s &= z2s * z2s; \\
 p47s &= p45s + z2s * p67s; \\
 p03s &= p01s + z2s * p23s; \\
 p07s &= p03s + z4s * p47s; \\
 \text{logs} &= p07s + Es * \log2h;
\end{align*}
\]
Combined rounding test

Itanium allows to mix rounding modes and precisions at no cost.

```c
/* Tentatively set the result */
result.INF = ROUND_EXT_TO_DOUBLE_DOWN(logi);
result.SUP = ROUND_EXT_TO_DOUBLE_UP(logs);

/* Rounding test */
mantissai = GET_EXT_MANTISSA(logi);
mantissas = GET_EXT_MANTISSA(logs);
bitsi = mantissai & (0x7ff&(accuracymask));
bitss = mantissas & (0x7ff&(accuracymask));
infDone= (bitsi!=0) && (bitsi!=(0x7ff&(accuracymask)));
supDone= (bitss!=0) && (bitss!=(0x7ff&(accuracymask)));

/* Only one test, expected true */
if(__builtin_expect(infDone && supDone, TRUE))
    return result;

/* otherwise launch accurate computation */
```
Avoiding a squaring of the number of tests

In each function, a few tests for special cases
(subnormals, infinities, etc.)

- **Make common case fast:**
 - Fuse all the tests for both endpoints into one, with static prediction.
- If this branch is taken, simply call the existing CRLibm functions that round up and down.
Compared Itanium 2 timings

<table>
<thead>
<tr>
<th>Library</th>
<th>exp</th>
<th>interval exp</th>
<th>log</th>
<th>interval log</th>
</tr>
</thead>
<tbody>
<tr>
<td>libm</td>
<td>42</td>
<td>n/a</td>
<td>31</td>
<td>n/a</td>
</tr>
<tr>
<td>fi_lib</td>
<td>586</td>
<td>1038</td>
<td>619</td>
<td>1158</td>
</tr>
<tr>
<td>CRlibm</td>
<td>60</td>
<td>69</td>
<td>66</td>
<td>96</td>
</tr>
</tbody>
</table>
An exp/log iteration

\[
\begin{cases}
 y_{n+1} = \log(x_n) \\
 x_{n+1} = \exp(y_{n+1})
\end{cases}
\]

<table>
<thead>
<tr>
<th>Library</th>
<th>Interval bloat in ulps</th>
</tr>
</thead>
<tbody>
<tr>
<td>fi.lib</td>
<td>13</td>
</tr>
<tr>
<td>CRlibm, RU and RD functions</td>
<td>2</td>
</tr>
<tr>
<td>CRlibm merged interval function</td>
<td>2</td>
</tr>
</tbody>
</table>
Conclusion and future work

Interval arithmetic, directed rounding and elementary functions

Perfect interval functions

Implementation

Conclusion and future work
Conclusions

- Itanium is nice for interval arithmetic
 - Nice floating-point unit for basic operations
 - Many many registers for parallel evaluation of elementary functions.
 - Predication, etc, for fused tests.
- CRLibm is nice for writing perfect interval functions
 - Safety: We are very happy to recycle our proofs
 - Tightness thanks to correct rounding
 - Performance-oriented algorithms
Future work

- Argue a lot: Is it worth writing tight functions?
 - Yes in CRLibm (why not? No additional work)
 - Not sure if you start from scratch

- A few implementation questions
 - The basic structure for FP intervals
 - Trigonometric argument reduction
 - Portability on a register-starved Pentium

- Publish CRLibm0.14beta1

Questions?