Fast, guaranteed-accurate sums of many floating-point numbers

Yong-Kang Zhu and Wayne B. Hayes
Department of Computer Science
University of California, Irvine
{yongkanz,wayne}@ics.uci.edu
Outline

1. Introduction
2. Related work
3. Algorithms
4. Results
5. Conclusions
Introduction

Example: (using IEEE 754 standard for binary floating-point arithmetic)

\[a = 1000.13 \]
\[b = 0.23 \]
\[n = 2^{10} = 1024 \]
\[s = a + n \cdot b \]

<table>
<thead>
<tr>
<th>Program 1</th>
<th>Program 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>double s1=a; for (int i=1; i<=n; i++) s1+=b;</td>
<td>double s2=a; s2+=n*b;</td>
</tr>
<tr>
<td>s1 = 1.235650000000000185 E 3</td>
<td>s2 = 1.235650000000000001 E 3</td>
</tr>
<tr>
<td>Mantissa of s1 = 1.4E99999999EB</td>
<td>Mantissa of s2 = 1.4E999999999A</td>
</tr>
</tbody>
</table>
Related work

- Recursive summation
 - ORS (Ordinary Recursive summation)
 - Recursive summation with orderings (increasing, decreasing, PSum)
 - Two other methods: Pairwise, Insertion

- Compensated summation and its variation

- Using high-precision accumulators
 - Demmel and Hida 2003

- Distillation algorithms
 - Anderson 1999
 - Ogita, et al., 2005
 - Zhu, et al., 2005
 - Rump, et al., 2006
Related work - A comparison

- No one method is uniformly more accurate than the other.
 (refer to recursive and compensated summations) – Higham 1993
- No high-precision accumulators in typical computers.
- Distillation algorithms achieve a higher accuracy:

<table>
<thead>
<tr>
<th>methods</th>
<th>speed</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>Modified Deflation</td>
<td>slow</td>
</tr>
<tr>
<td>Ogita, et al.</td>
<td>SumK ((k = 3))</td>
<td>fast</td>
</tr>
<tr>
<td>Rump, et al.</td>
<td>AccSum</td>
<td>fast</td>
</tr>
<tr>
<td>Zhu, et al.</td>
<td>Zhu05</td>
<td>medium</td>
</tr>
</tbody>
</table>

\(R\) is the condition number: \(\sum_{i=1}^{n} |x_i| / \left| \sum_{i=1}^{n} x_i \right|\)
Algorithms

• Error-free addition: \(\{s, e\} \leftarrow \text{AddTwo}(a, b) \)

 \[
 \begin{align*}
 s + e &= a + b \\
 s &= \text{fl}(a + b) \\
 \text{fl}() : \text{standard floating-point operation}
 \end{align*}
 \]

• Assume \(\text{fl}() \) is correctly rounded (round-to-nearest)

Note: faithfully rounded

\[
\begin{cases}
 \text{fl}(x) = \text{either } a \text{ or } b, & \text{if } x \neq a \text{ and } x \neq b \\
 \text{fl}(x) = a, & \text{if } x = a \\
 \text{fl}(x) = b, & \text{if } x = b
\end{cases}
\]
Algorithms (Cont’d)

- FastSum is based on AddTwo

\[
\text{array } \begin{bmatrix} x_1 & x_2 & \ldots & \ldots & x_n \end{bmatrix}
\]

\[
\{s, x_i\} \leftarrow \text{AddTwo}(s, x_i)
\]

iteratively call AddTwo

- \(s = \text{fl}(x_1 + \text{fl}(x_2 + (\ldots \text{fl}(x_{n-1} + x_n) \ldots))) \)
- The errors are redistributed into the original array
- No significant digits are discarded
Algorithms (Cont’d)

• The basic idea of FastSum

Iteratively call AddTwo on all the numbers, to obtain s

Iteratively call AddTwo on positive and negative numbers separately, to obtain s_p, s_n

Estimate the sum of the remaining errors, say e_m

Call AddTwo to add s_p and s_n into s, and obtain two errors e_1, e_2

N

fl$(s + e_m) = s$?

Y

Return s if faithfully rounded; otherwise recursively call FastSum

Question 1

Question 2
Algorithms (Cont’d)

Question 1: can $\text{fl}(s+e_m)=s$ fail to be satisfied?

• Claim: iteratively calling AddTwo will, in finite loops, converge to the following stable state:
 – The array is sorted by increasing magnitude
 – the mantissas of adjacent elements are non-overlapping
 – thus AddTwo does nothing
 – and the sum is constant
Algorithms (Cont’d)

• e_m is calculated by:

$$e_m \leftarrow count \cdot \text{ulp}(\max(|s_p|, |s_n|))$$

 number of non-zero errors ulp (unit in last place)

• If such a stable state arrives, then
 – $count$ equals the number of non-overlapping floating-point numbers
 – The maximum of non-overlapping floating-point numbers is limited by the arithmetic
Algorithms (Cont’d)

Compute this maximum:

- \(\text{fl}(s + s_p) = s, \text{fl}(s + s_n) = s \quad \implies \quad \max(|s_p|, |s_n|) < \text{ulp}(s) \)
- \(\text{fl}(s + e_m) \neq s \quad \implies \quad e_m > \text{ulp}(s) \)
- Recall: \(e_m \leftarrow \text{count} \cdot \text{ulp}(\max(|s_p|, |s_n|)) \)
- Thus, \(\text{count} \cdot \text{ulp(ulp(s))} > \text{ulp}(s) \quad \implies \quad \text{count} > \beta^t \)
- But in IEEE754 double,
 exponent = 11 bits, mantissa = 53 bits
 so, \(\text{count} < 2^{11} / 53 \approx 38 \ll \beta^t = 2^{53} \)

Answer 1: \(\text{fl}(s + e_m) = s \) can be satisfied in finite loops
Algorithms (Cont’d)

Question 2: Is s faithfully rounded when recursively calling FastSum?

- Recall e_1 and e_2
- It is possible that $\text{fl}(s + e_m) = s$, but $\text{fl}(s \pm e_m + e_1 + e_2) \neq s$
- In this case, name the current s_{s_1}, and recursively call FastSum on the remaining numbers to obtain s_2, etc.
- Note that s_i and s_{i+1} overlap by at most 1 digit
- $s = s_1 + s_2 + \ldots + s_m$, m is finite, and s_m is faithfully rounded
Algorithms (Cont’d)

• The basic idea of FastSum

- Iteratively call AddTwo on all the numbers, to obtain s
- Iteratively call AddTwo on positive and negative numbers separately, to obtain s_p, s_n
- Estimate the sum of the remaining errors, say e_m

Call AddTwo to add s_p and s_n into s, and obtain two errors e_1, e_2

\[\text{fl}(s + e_m) = s? \]

- **Question 1**
 - Return s if faithfully rounded;
 - otherwise recursively call FastSum

- **Question 2**
Question 2: Is s faithfully rounded when recursively calling FastSum?

- Recall e_1 and e_2
- It is possible that $\text{fl}(s + e_m) = s$, but $\text{fl}(s \pm e_m + e_1 + e_2) \neq s$
- In this case, name the current s s_1, and recursively call FastSum on the remaining numbers to obtain s_2, etc.
- Note that s_i and s_{i+1} overlap by at most 1 digit.
- $s = s_1 + s_2 + \ldots + s_m$, m is finite, and s_m is faithfully rounded.

Answer 2: s is faithfully rounded
Results

- Running time for 4 algorithms

Three ways to generate the original data

- Data No.1
 - well-conditioned
 - condition number $R = 1$, i.e., all positive or negative

- Data No.2
 - ill-conditioned
 - subtract the mean from each summand

- Data No.3
 - ill-conditioned data
 - condition number $R = +\infty$
 - generate pairs of equal numbers with opposite signs
 (the final sum is exactly zero)
Results (cont’d)

- Running time for 4 algorithms

<table>
<thead>
<tr>
<th>Data No.1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10 ($\times 10^6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum3</td>
<td>3.9</td>
<td>4.5</td>
<td>6.8</td>
<td>6.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Zhu05</td>
<td>11.7</td>
<td>11.6</td>
<td>17.1</td>
<td>16.0</td>
<td>14.9</td>
</tr>
<tr>
<td>AccSum</td>
<td>4.0</td>
<td>3.5</td>
<td>4.9</td>
<td>4.7</td>
<td>4.3</td>
</tr>
<tr>
<td>FastSum</td>
<td>4.0</td>
<td>4.5</td>
<td>6.3</td>
<td>5.9</td>
<td>5.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data No.2</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10 ($\times 10^6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum3</td>
<td>5.2</td>
<td>4.0</td>
<td>6.3</td>
<td>5.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Zhu05</td>
<td>15.7</td>
<td>14.1</td>
<td>21.9</td>
<td>18.9</td>
<td>16.6</td>
</tr>
<tr>
<td>AccSum</td>
<td>6.3</td>
<td>7.0</td>
<td>9.8</td>
<td>8.7</td>
<td>9.5</td>
</tr>
<tr>
<td>FastSum</td>
<td>4.1</td>
<td>4.5</td>
<td>6.8</td>
<td>5.9</td>
<td>5.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data No.3</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10 ($\times 10^6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum3</td>
<td>4.2</td>
<td>8.8</td>
<td>6.6</td>
<td>6.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Zhu05</td>
<td>15.6</td>
<td>29.3</td>
<td>22.7</td>
<td>20.3</td>
<td>24.7</td>
</tr>
<tr>
<td>AccSum</td>
<td>6.3</td>
<td>13.7</td>
<td>10.5</td>
<td>9.0</td>
<td>11.4</td>
</tr>
<tr>
<td>FastSum</td>
<td>5.2</td>
<td>10.7</td>
<td>8.1</td>
<td>7.3</td>
<td>8.8</td>
</tr>
</tbody>
</table>
Results (cont’d)

• Why choosing Dekker’s algorithm for AddTwo

<table>
<thead>
<tr>
<th></th>
<th>additions</th>
<th>branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekker’s</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Knuth’s</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

– Will branches slow down the speed significantly?

• Numerical test

<table>
<thead>
<tr>
<th></th>
<th>with function calls</th>
<th>without function calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Dekker’s algorithm</td>
<td>437</td>
<td>375</td>
</tr>
<tr>
<td>Using Knuth’s algorithm</td>
<td>469</td>
<td>391</td>
</tr>
</tbody>
</table>
Results (cont’d)

- Running time of FastSum is linear with n

<table>
<thead>
<tr>
<th>n</th>
<th>times</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000,000</td>
<td>1</td>
<td>410 ms</td>
</tr>
<tr>
<td>1,000</td>
<td>10,000</td>
<td>≈ 410 ms</td>
</tr>
</tbody>
</table>

![Graphs showing running times](image-url)
Results (cont’d)

• In our test, for Data No. 3: \(R = +\infty \), exact sum = 0
 – Zhu05, AccSum, FastSum can always generate correct results, if no overflow occurs
 – Sum3 fails when \(\Delta E > 90 \)
 – \(\Delta E > 2000 \), AccSum produces an overflow
 – FastSum requires at most 48 loops when \(\Delta E \) is big, although it is not realistic that \(\Delta E > t \)
Conclusions

- **FastSum** is as fast as the existing algorithms.
- **FastSum** can guarantee the accuracy, independent of both n and the condition number R.
- For floating-point arithmetic other than IEEE754, **FastSum** works as long as an effective **AddTwo** exists.
- The running time is linear with n, if generating the original data with the same attribute.
- In our environment, branches are not important.